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(B) If you get the equivalent of the tables, or so much of
them as are interesting or useful to you, in the monthly sec-
tion reports, or the Annual Report of the Chief of Bureau, in
form more serviceable to you, please so state.

(C) 1s there any feature or subject not yet introduced into
the Review that you wish us to take up?

(D) Is your copy of the Review destroyed, preserved for
future use, or deposited in some library ?

STUDIES ON THE VORTICES IN THE ATMOSPHERE OF
THE EARTH.

By Prof. FRANK H. BIGELOW.

I.—THE APPLICATION OF THE THEORY OF VORTEX MOTION
TO THE FUNNEL-SHAPED WATERSPOUT AT COTTAGE CITY,
AUGUST 19, 1896.

INTRODUCTORY REMARKS.

The purpose of the series of papers on the thermodynamics
of the atmosphere, which appeared in the MonNtELY WEATHER
Review during the year 1906, was to indicate the distribution
of the masses of air of different temperatures in the neighbor-
hood of the axes of cyclones, anticyclones, and a typical water-
spout, and to develop the formulas which are useful in dis-
cussing the energy contained in them, available in the restora-
tion to a thermal equilibrium under the action of gravity.
‘When a sheet of relatively cold air overlies a sheet of relatively
warm air there will be an interchange of position, and in
changing places there will be a development of certain stream
lines which it is important to understand as fully as possible.
Such a distribution of stratified air is an efficient cause of
the formation of the vortices popularly called the tornado, the
waterspout, and the hurricane. There are two types of such
vortices prevailing in the earth’s atmosphere, each of which is
represented in the Cottage City waterspout of August 19,
1896." The first type is seen in the second appearance, as on
Chamberlain’s photograph, 2d A, and the second type is
found in the third appearance, as on Chamberlain’s photo-
graph, 34 A. It will be shown that the St. Louis tornado,
May 27, 1896, and the De Witte typhoon, August 1-3, 1901,
belong to the first, or dumb-bell, type, while many small funnel-
shaped tornadoes belong to the second type. These typical
examples will be fully worked out, and the velocities, radial (),
tangential (v), and vertical (w), computed, together with the
various relations connecting them together. When two
masses of air of different temperatures lie side by side the
stream lines which are generated in the thermal flow are of a
very different type from those of the preceding cases, in so
far as the cyclone represents a-pure vortex motion of any
type. The general vortices in the earth’s atmosphere or other
atmospheres belong to still other classes. These vortices
were summarized on pages 512, 513, of the International Cloud
Report,* and in the Moxrury Wearner Review, January, 1904;*
but in this present series of papers an attempt will be made
to find the constants and the velocities existing in these
specific examples. The final step in the solution of this class
of problems will consist in correlating the observed tempera-
ture and pressure conditions with these computed velocities.
It will be important to develop the computations in detail, so
that meteorologists may be able to discuss the circulations of
the air as practical examples of the interchange of energy in
the atmosphere. The knowledge already attained regarding
the temperatures in the earth’s atmosphere justifies us in
making an effort to advance these fundamental problems in
dynamical meteorology. It seems to me quite probable that
the best way to determine the physical constants belonging to

1See Monthly Weather Review for July, 1906, p. 307-315, and plates.

2 Report of the Chief of the Weather Bureau, 1898-99, Vol. II. Here-
after this is referred to as ‘< Cloud Report,” or merely «*C.R.”

$ Vol. XXXII, p. 15-20.
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the sun’s atmosphers, i. e., the specific heats and the tempera-
ture gradients, will be by utilizing the visible surface velocities
of the solar vortex, which is a funection of the same.

THE FORMULAS OF VORTEX MOTION.

The subject of vortex motion applicable to the earth’s atmos-
phere may be conveniently referred to in the following works:

1. Basset’s Treatise on Hydrodynamics, Vol. I, pp. 34-94,
1888.

2. Lamb’s Hydrodynamics, pp. 222-265, 1895.

3. Wien’s Lehrbuch der Hydrodynamik, pp. 54-83, 1900.

4. Bigelow’s Summary of Formulas, Cloud Report, pp.
508-513, 1898.

Since the notation differs in these treatises the following
table of equivalents is added:

TABLE 1.— Equivalent systems of notation.

Functions, Basset, Lamb, Wien. Bigelow,
Total differential................ 9 k] d d
Partial differential.............. d d ) d
Differential increment........... 8 8 ) 8
Finite difference ................ A A A A
Rectangular coordinates......... Uy 5T i,z EANTN T, Yz
Cylindrical coordinates ......... o, e,z &, 1 py 2 @, b,z
Polar coordinates,............... r, 0, r 8w T, ¢, ® r, 8, A
Rectangular velocity ........... v, w, o v, W, U u, v, w u, v, 0
Cylindrical velocity............. vy, u v, 0, u r, O3, y, w 1y, vy, Wy
Polar velocity ..... ...oooiil W, TyW, U e Hay oy e
Angular veloeity...........o..... LIRS 76§ & ¢ w1, w3, wy

Right hand. | Right hand. | Left hand. | Right hand.

Current function................ + ¥ — + ¢ -+
Velocity potential...... ........ + b —¢ + + @
Statie potential.. ............... + 1 + —T1 +V
Vortical coordinates............. M, N, L G, H, F v W F, G, H
Kinetic energy............ ..... T T L T
Potential energy............... 18 1 F U
Density ..... «.ooviiiiiaiat. p p 8 p
Viscosity coeficient............. v =:: m k2 "

Bigelow and Wien take the z-axis as the axis of rotation in
cylindrical coordinates, while Basset and Lamb use the a-axis.
‘Wien has left-hand rotation and the others right-hand.

~Z
A
—>» + 4
+W
7) 7/ +U
W .
K
X +U

F1c. 1.—Rectangular coordinates of any pointare z, y, 2. Cylindrical co-
ordinates of the same point are @, ¢, z. Velocities at that point (@,¢)
are «, v, w. Angles at that point (&, ¢) are i, s.
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TABLE 2.— Equations in cylindrical coordinales.

(Compare equations 152, 160, 161, 162, 163, 165. . . . .. pp. 497, 499, 500, Cloud Report.)
[ O = udl = 0. = W co8 ¢.
1) Linear displacements. Cloud Report 152. 4 dy= vit = wdg. y= msin ¢.
| 92 = wdt =02
a)l=()_ f_(-)]‘=_ﬂr=
. 1 a.r dw
(2) Angular velocities and forces in symmetrical motion | , _ . ) av ar
about the z-axis. Cloud Report 160. ! ‘ ToyT T wog
v /2
o, = + = L—-(»(,I_:—q
u (j_f_u cos ¢ — v 8in ¢.
[¢
3) - Linear velocities. Cloud Report 152.
v = Zz = u,8in ¢ + v, cos ¢.
dw
U, = T Yo, + zo,
@) Linear velocities with moving axes in eylindrical co- | v, = w9 _ sw, + xo,
ordinates. Cloud Report 160. ot
w, = (25 — rw, + yw
Y I
Dy = ne ov
wie 0z
(5) Angular velocities omitting the subscripts in u v, w. | 20,= g _ f‘)“",
Cloud Report 162. gz~ om
D = Juv ou v
dw - 'cb(’)g,- o’
oV aP  Hu du ot ¥
_(')Tﬂ—,v(’)ai= ot —+ u Jw —+ w d;_%
(6) General equations of motion symmetrically 0 = m + u ?ﬂ + w dv | o
about the z-axis. Cloud Report 161. ot ow 4
0 1" 0P _ ouw aw ow
l , - U, o .
oz pd’ ot Jw 0z
(7) Equation of continuity. Cloud Report 165. ! ()(,ﬂ) (,) r m()ll’_ ou g _y.
{ ow e gz~ dw oz
[ P du o Pt
‘ ,”—JU;=;H_..ncosU L_m+Az(.
(8) General equations of motion on the rotary earth. | .~ ,,(,)?, dv 4+ 2ncosd-u -+ iy
Cloud Report 165. pmide — dt @
({P _dw
[ p0z ‘dt + 9
(9) It is convenient usually to take the positive direction of which are known as Stokes’s functions.
the z-axis upward, but to place the plane x y below the In order to satisfy the second equation of motion in 161,

gea-level surface. o
The velocity coordingtes u, v, w in forms of the current function ¢. where the motion is steady and ot = 0s the value of v is,

In discussing ploblems in vortex motion, it is convenient to &
use the current function ¢, which is deduced from the equation (138) v=—,
of continuity. This equatlon is:
Ju u  ow 80 !;ha,t ¢== v is the constant in vortex motion.
(10) st ot = 0, Substituting these values of «, v, w in (161),, we have,
and it may take the form, (14) _lodad 1a¢d _lfdi’,)fi lod ¢
ow Tomo: T wi: ot T Btz 06 @ oz @b
(11) mdm(zlm)+~—0 I ]
n the case of steady motion, if the second equation of 161
This is satisfied by substituting the velocities, is multiplied by @, we have,
- -
(12) U= —%;Z, 'lL’=+;C]Z-;%, (15) tu.’+llwgl—-}-uw{:i’-l—wu (3;::(),
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ow . .
Since = 0, it may also be written,
4
(16) u Z (wv) + Wy (o70) = 0.

This shows that ¢ = v& = constant is a solution and de-
velops the vortex law required. Any function of ¢ which
satisfies this equation will be a solution of the second equa-
tion of motion.

(17) Hence, wv = f'(¢') = an arbitrary function of ¢, is a solu-
tion of the second equation of motion.

We can eliminate the potential and pressure terms from the
first and third equations of motion by differentiating the first
to z, the third to @, subtracting and substituting the angular

. du Jw . .
velocity, 2w, = 5 oo terms of ¢. Following these pre-
cepts we obtain the general vortex equation.

0o O (0u_ 0w ou fon i
(18) ot ( 9z oo + dw\dz O
The following auxiliaries are found from » and =,
du g 1o¢ ,
N —_ —_ - — . PO = ") .
(19) 7Xo] 0w ® 0z J(¢)
ow o 1 9¢ v ()T
(20) 9z ' 0z wow’ @ @
ou  Jw 1 /9% 10¢ 8%
(21)  2o,= G?ﬂ%)——aQw—mﬁﬁwf>

Masaking the substitutions, we obtain

(7] ou ow o [f ()]
(22) 0=(’)t(2w"),+ (-?E(Ztuz)—i- f(;)g(?.wg)—a—z o
Hence,
10 (5% 1 &¢ (')'19") A
p 0=_" o T T
(23) w Jt <r’)m'-' wJm + gzt + 0:

g a1 [P
T ow 0z | ot \oo?

Any function of ¢ satisfying this equation is capable of giv-
ing a vortex motion. In the application to the atmospheres
of the earth and the sun some simple forms will be considered
and illustrated by examples from the observations. Inasmuch
a8 it is not possible to make observations in all parts of the
tornadoes, hurricanes, and cyclones, it has been very difficult
to secure the values of the constants entering into the formu-
las, but it is thought that this trouble has now been overcome.
The simultaneous operation of the current function ¢ in equa-
tions (17) and (28) is necessary in order to combine the veloci-
ties u, v, win a consistent vortical motion. That we may make
it clear in what respects the solutions adepted in these papers
differ from other solutions found in previous discussions, the
following brief recapitulation is summarized from my Cloud
Report, 1898-99, p. 595-603.

Ferrel’s solution.—Ferrel took the second equation of (8),
and for assumed symmetry about the z-axis with no friction,
kv=0, reduced it to the form,

(24) %% + (2rncos 04-v)) u=0.

From this by integration within a fixt cylindrical surface

of radius @, he deduced the tangential velocity

2
(25) v=<2gz%z—1>mncos(i,
at the distance @ from the axis. The angle of divergence of
the stream line on the horizontal plan from the tangent to
the isobar, in terms of the coefficient of the deflecting force,
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A=2n cos 4, and the coefficient of friction %, is deduced to be,
du
for = 0,
R . k
(26) tani = — ”

This signifies that the cause of the departure of the currents
entering the closed isobars is the effect of the friction and
the deflecting force upon the tangential component. But we
shall show that the angle 7 is due to an entirely different set
of circumstances as a primary cause, tho its normal value on a
given level or stratum may be slightly modified by these two
auxiliary forces.

The German solution.—The second equation of motion has
generally been discust in a different manner by the German
meteorologists, who have used two other solutions of which it

+r9w Au dw a /o
dz\ o0z dw) o\ ®

is ecapable when the fuller form is employed, namely,

(27) %;* —l-i;l?-l— Au+ko=0.

These two-type solutions are common to the works of Guld-
berg and Mohn, Sprung, Oberbeck, Pockels, and others, wherein
Oberbeck and Pockels have introduced modifying factors into
the simple solution of Guldberg and Mohn or Sprung. One
solution is taken applicable to the inner part of a cyclone, and
the other to the outer part.

7 1 /5% 109y A7
“oo | ot \oe T wom T osT
. ) f (({u)
I o
1 a0 0% 27 (¢) Az
wimt i) |

Second solution
(outer part).

First solution
(inner part).

. . . ¢ ¢
(28) Radial velocity U= —5 . u=—

i . ) Le le
(29) Tangential velocity v=+ 7" ; wa v= 4 gz
(30) Vertical velocity w= 4 cz. w=0

. k—e _ I8
(31) Angle of inclination, tan i = 'l‘( =— " tani= " =— -
‘ Current function (w.i) ¢\ — () w2, ¢ =cz
(32) ;
Current function (v) ¢,= c) e w’g g,=c i

It is seen that these solutions depend upon three constants:
&, the coefficient of friction; 4, the coetiicient of the deflecting
force due to the earth’s rotation; and ¢, the coefficient of the
vertical distance z from the plane of reference, in order to
produce the observed angle of inclination. The current func-
tions derived from these solutions are, however, inconsistent.
If Stokes’s functions be applied to » and w in the first solution,

c . .
then ¢ = g @5 but if the vortex law, ¢=vw=constant, is
A

[N o . . .
used, then ¢, = Y S which is a different value of (. In

the same way, by means of Stokes’s functions, (1 1) give for the
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. A
current function ¢,=cz, while the vortex law ¢,=v@=c¢ 7=

a constant, but differing in value from ¢, Hence, ¢, = const.
¢; or ¢, = const. ¢. In nature, there is no outer part
of a cyclone where w =0, and there is no boundary where
the law of motion changes suddenly from the parabolic

type, l—ﬂ; == constant, to the hyperbolic type, » @ = constant, as

is called for in these solutions. Nor is it possible that the
natural values of k, 4, ¢ can account for the observed angle ¢
in all levels, and they are by no means constant even on the
same vortex tube. .

SOLUTION FOR THE FUNNEL-SHAPED VORTEX TUBE. COTTAGE CITY

WATERSPOUT, CHAMBERLAIN 3d A.

Since my solution for the vortex represented in Chamber-
lain’s photograph 8d A of the Cottage City waterspout, MonTHLY
WearsER REViEW, July, 1906, Plate VIII, approximates the type
which is involved in the first solution, inner part, as applied
by the German meteorologists to the cyclone, I will take up
that problem before the others, and will then illustrate the other
type by Chamberlain’s 2d A, Plate I, the St. Louis tornado, and
the De Witte typhoon. The ocean cyclone and the land cyclone
are impure vortices of the latter type. Unfortunately, by
adopting the present procedure it is not possible at the outset
to demonstrate my method of finding the values of the con-
stants required in the evaluation of the formulas in this special
case. Having only the photograph of the tube, which gives
the outline of the vortex, but no idea of the velocities in the
several directions, it has been exceedingly difticult to discover
what the vortex comstants are in nature. They were finally
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obtained by starting with the hurricane, and advanecing thru
the tornado and the second waterspout vortex to the first type
now under consideration. Many efforts were made before this
successful result was obtained, the outcome being now checked
by reproducing a vortex whose dimensions agree closely
with that represented in the photograph when the latter is
translated into meters by the scale already found to apply,
namely, I millimeter on the photograph = 18.3 meters at the water-
spout. The derivation of the formulas is very simple after the
form of the vortex function has been determined. That form
which is applicable to the funnel-shaped vortex tube is,

(33) ¢ =Ca’z.
From this formula we find by differentiation,
(34) :};’;—1 = 2Cw2, % =92C%, and,
(35) :;—Z = C&?, %:m = 0, so that,
(36) :a;" — %ng (;j' = 20z — 20z + 0 = 0, and hence

the general vortex equation (23) is satisfied. The last term is

obtained from the centrifugal force. Thus, since f(¢)=vo=
Cw’2, we have,

NCVACY

276 gy

p= - z

20w . Ot
T~ 20,

(37)

5 =

The structure of the vortex is such that the following rela-

tions hold true on the same level, as will be illustrated in the
discussion of the Cottage City waterspout.

38 atio. og p = log P = the ratio between successive tubes.
(38) Rat 1 log
w1
(39) Constant. log 0, = log C, + 2nlogp = log C, + 2nlog mTL'
(10) Radius. log @, = log m,— nlogy = logm,— nlog " .
(41) Radial. log u, = log v, + nlogp = logu, -+ nlog cr:.H '
(12) Tangential.  log v, =log v+ nlogy = logn, + nlog * .
(43) Vertical. log w, = log w, + 2n log p = log w, + 2n log m(::lrl :
(44) Horizontal. log tan i, = constant.
(45) Vertical. log tan 7, = log tan 7, -+ N log p = log tan Mo+ 1 log a:ljrl .
(46) Time. log #, = log t, — 2n log p = log {, — 2n log m(::x )
2 2
(47) Volume. Volume = = <m"_ —® o ) i, = constant.
Centrifugal. 1 <”?> 1 ') 3n 1 1 <"2> +3nlog —*
. r | — = — (o] U = - .
(48) entrifuga g\ & . og (m n+ n log p g | & , 3n log D1
Bn - B"-+1 My, Wy
(49) Pressure. log B —B, log P = log p = log T

Formulas for the radial, tangential, and vertical velocities.

It will be convenient to use different coordinate axes in
solving the two types of vortices represented respectively by
the funnel-shaped and the dumb-bell-shaped tubes, photo-
graphed in Chamberlain 3d A and 2d A. Tor the former the
z-axis should be taken positive downward from a reference plane

near the base of the cumulus cloud from which the vortex is
projected; for the latter the reference plane is below the sur-
face of the sea, and the z-axis is positive upward. The reason
for this change in the direction of the coordinates will clearly
appear in the discussion of the examples of the dumhb-bell
vortex.
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F16. 2.—The (@2) lines in a funnel vortex for different values of the constant C. The horizontal dimensions have been magnified ten times, relative
to the vertical dimensions, in order to exhibit the internal structure.

TABLE 3.— Formulas applicable to the funnel vortex.

Number of column. | 1 2

Current function. ¢ = ¢z =
!
Constant of vortices. : ' = f =
. . 14y
Radial velocity. n o= oy
. . ‘ ¢
Tangential velocity. |r = - =
ical veloci L a¢
Vertical velocity. = — =

|

3 4 5 6
o woo
(= v = UDS = — o T
2
9’: n (12 w
s wz w2
) ;
t ¢ ww
1 — > o
o = g ws 2z
B ‘r’: i
Umg = g = 5 =  — 3 o3,
4
Quz D¢ 2n
= T o - T o T T w

The formulas for the radial (u), tangential (v), and vertical
(w) velocities are given in Table 3, together with several
check combinations.

Having adopted the form of current function, ¢, then the
radial and vertical velocities are found from Stokes’s functions
and the tangential velocity from the vortex law, ¢ = vy =
constant. It is evident that one value of the constant C holds
true for a single stream line (mz), but changes its value from
one vortex tube to another. Thus, for the lines in the Cottage
City waterspout, we have for—

Line (1) ¢, = 0.001111.
Line (2) ¢, = 0.002862.
Line (3) (¢;=0.007372.
Line (4) (!, = 0.018990.
Line (5) €, = 0.048910.

Line (6) C,= 0.126000.

It was for a long while impossible to discover a method for
computing these values of O, C,, etc.,, because no velocities
but only the dimensions of the outer sheath (1) were available
for use. It is seen by the formulas that the dimensions of the
vortex depend upon C, even when the (m, z) are known, so
that if the height s and the radius @ are given at successive
points it is yet necessary to know C before the velocities can
be computed even approximately. The velocities (u, v, w) all
increase with C, and hence they are all greater in the interior
in proportion to the approach to the axis; u increases but v
and w diminish with approach to the plane of reference at the
base of the cloud, as determined by the formulas in column 3.

In a vortex of this kind the simplest relation is that the
ratios of the successive radil are equal and constant, so that,

1 2 8 P
o Bpgy
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If the values of the radii of successive isobars can be meas-
ured, @, (outer), @,, o,, @, (inner) the value of p can be
rea.dlly computed The approximate radii of the circular iso-
bars in hurricanes and cyclones can be thus measured on the
charts, and from these the value of p, and log p, determined as
a mean. Thus for four cases, i. e., the De Witte hurricane,
the St. Louis tornado, a typical large ocean cyclone, and a
typical large land cyclone, I have computed log ¢ from the
available data. (See Table 4.)

TABLE 4.-— Values of log p in several vortices.

De W. hurricane. S. L. tornado. Ocean cyclone, Land cyclone.
B log p B logp B log p B fog p
760 755 735 | e
0.20412 0. 20412 0.10266 : 0. 10791
750 745 750 L2 s
0.19269 0.20412 0.10914 | 5 2 0.12390 | &
740 735 45 22| 0 12
0.21904 | « 0.19382 | + 0,10003 [ J 0, 15924 |+ 8
730 2| 725 g1 740 S| 5 E
0.16230 -3 0.23408 % 0.1095¢ | ~= 0. 22874 |
720 g | 715 31 735 I U
0.23798 | S 0.19189 [ S 0. 10400 0. 43573
710 705 730 Y 735 J
0. 22578 0,21388 0.12665 | 2
700 695 j 725 |2
0.19626 0.19629 0.16428 [ 5
690 685 720 2
: 0.24055 | ©
Means ...0. 20563 0. 20546 0. 10500
1. 6056 1. 60493 1. 27350
|

In the hurricane and tornado, log p is practically constant
and nearly the same in value; in the ocean cyclone it is con-
stant outside of the isobar 730, but increases in value toward
the axis from isobar 730 to isobar T15, showing that the ocean
cyclone is not a pure vortex near the center. In the land
cyclone, log p is not constant, but enlarges in the same ratio
that occurs near the center of the ocean cyclone, showing that
the land cyclones do not follow the pure vortex law, even
approximately.

Since the Cottage City waterspout resembles the pure vor-
tices of the tornado and hurricane more than the imperfect
vortices of the ocean and land cyclones, it is proper to adopt
log p = 0.20546 as an approximate value. It may be found
that some such value of log p is a characteristic of the earth’s
atmosphere, when its small vortices develop freely; that is, it
may be a typical constant, while other atmospheres may op-
erate according to a different constant.

The current function constant,

log ¢ = log (v &) = 2.60206,

has been determined by a series of trials, which it is not nec-
essary here to enumerate. If it were possible to measure the
tangential velocity v at any point (wz) in the vortex, as, for
instance, on the sheath, where it begins to expand rapidly be-
fore merging with the cloud, then we should have ¢ = v =
constant. Several such measures at different points on the
sheath (v, @), (v, @,), ete., would give several values for the
constant, and the mean could be taken as available thruout the
vortex. This can be done for the tornado and the hurricane
on the ground, or at the sea level; but with the waterspout it
is possible only to assume certain values of v at a given height,
z, measure w, compute the tube from the cloud to the sea
level, and by interpolation compare with the observed dimen-
sions as taken from the photograph. It was finally deter-
mined to adopt the following initial data:

o = 60 meters.

. _ _ v = 6.67 meters per second.
At height z = 100 meters. log ¢ — 2.60206
log p = 0.20546

Table b shows the manner in which the tube obtained from
the computation to be given matches the dimensions scaled
from the photograph, Chamberlain 3d A.

63
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TABLE 5.—Comparison of the computed and observed radii, Chamberlain
3d A, in meters.

i Radius Radius
Height =, | computed | Chamberlain
[0l 3d A.¥
0 L.
1 600.0 (600)
2 4243 |l
5 268.4 [..o.i.. eeann
10 189.7 200
25 120.0 125
50 84.9 85
100 60,0 60
200 42. 4 43
300 34.6 35
400 30.0 30
500 26.8 25
600 24.5 23
700 22,7 22
800 21.2 20
900 20. 0 19
1000 19.0 18
1100 | 18.1 ; ..............

*1 millimeter on photograph = 18.3 meters at the waterspout.

There is some uncertainty in tracing the form of the vortex
head near the cloud, but the darkening of the cloud in Cham-
berlain 3d A and 3d B indicates that the vortex spreads out
to about 1200 meters in diameter, something like the height
of the cloud base from the sea level. This gives 600 meters
radius near the plane of reference, as in the table. At the
bhottom the tube is surrounded by a lofty cascade, which pre-
vents the measurement of the radius at the level s = 1100
meters.

The constants C are found at first from computations with
log ¢, @, z on the level z =100, using the measured radius
m, and applying log p to the log @, by formula (30), in suc-
cesgion from the outer to the inner tubes, which are supposed
to be separated from each other by the pressure in millimeters
of mercury, as determined by (49). An example of the pre-
liminary computation is shown in full in Table 6.

The results of Table 6, Section I, there computed for the
height =100 meters, are entered in sections I, II, ITI, table
7, in the appropriate line, and printed in heavier type. The
other parts of these tables are to be computed from these
data for all the other altitudes. Having computed the radial
distance from the axis at all altitudes in order to find the
radial component u, it is only necessary to multiply @ by the
C of the respective lines; to find the tangential component it is
enough to multiply u at each point by the height z; and to
obtain the vertical component it is sufficient to multiply —2C
by the height 5. In this vortex the component velocities and
the coordinate distances stand in very simple relations, and
this is probably one reason why the atmosphere tends to cir-
culate according to this simple solution of the second equa-
tion of motion.

An inspection of Table 7, Sections I, IT, II1, shows that the
following facts hold true in regard to the velocities. The
radial component u increases slowly upward thru the long,
tapering tube till very near the cloud base, and it then
increases very rapidly; it is greater in the interior of the vor-
tex than in the outside tubes, showing that the inner helices
slope outward more rapidly than do the outer omnes; it is
probable that the extreme actual radial velocity in a horizontal
plane near the cloud is practically about 5 meters per second
where the tangential rotating velocity disappears. The tan-
gential velocity decreases rapidly upward, especially in the
inner tubes, and it increases rapidly from the outer tube
toward the axis, where it may amount to 200 meters per sec-
ond, or 447 miles per hour. It is not probable that such enor-
mous velocities existin the atmosphere even under vortex con-
ditions, but a pure vortex evidently develops tremendous
gyratory motions very near the axis. The vertical velocity de-
creases rapidly upward, more so as the tubes diminish their
dimensions; but it increases toward the axis, where it may
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attain the enormous velocity of 2560 meters per second, or 559
miles per hour. In the extreme total velocity, at the point
where this computation ends, if the vortex actually develops
8o near the axis, we have,

g, = [ (0.13)* + (146.7)*+ (107.6)" ]%/2 = 182 meters per second,
or 407 miles per hour.

In Table 8 are given the total velocity ¢ at numerous points

within the vortex, the horizontal angle 7, which it makes in

the plane at the height z, and at the point a, ¢ with the tangent
to the circle; also the vertical angle z, which it makes at the

TABLE 6.— Cottage City Waterspout.

MONTHLY WEATHER REVIEW.

OoToBER, 1907

gsame point with the tangent. (See fig. 1.) The angle ¢ is
positive outward and the angle 5 is negative upward in this
system of coordinates. Section I of this table shows that the
angle 7 is the same for each tube on a given section at the
height z, and it increases upward slowly thru the long, taper-
ing tube and very rapidly in the last 10 meters, where the
motion of ¢ is becoming asymptotic to the plane of reference.
The angle » decreases upward and becomes zero at the cloud
base; it increases rapidly from the outer tube toward the axis,
and seems to be limited by the angle 36° on tube 5. The
angle of the pitch of the helix is steeper near the center of the

Chamberlain, 3d A. Computation of the radius @ thruout the vortex.

Assume & =60 at 2=100; log y'=2. 60206; log p=0.20546.

I. Line. (1) (2) (3) [€)] ) (6) Formula.
t -
log & 1. 77815 1.57269 1.36723 1.18177 0. 95631 0. 75085 &
® 60.0 37.4 23.3 14.5 9.0 5.6 @, 41 =7” .
log o* 3.55630 3.14538 2.73446 9,32354 1.91262 1. 50170
z 2. 00000 2. 00000 2. 00000 2. 00000 2. 00000 2. 00000
@ | 5.55630 5. 14538 4. 73446 4.32354 3.91262 3.50170
logC | 7.04576 7. 45668 7. 86760 8. 27852 8. 68944 9. 10036
0.001111 | 0.002862 | 0.007372 :  0.01899 0. 045891 0.12600 | 0= ¥
log Cw 8.82391 9. 02937 9. 23483 9. 44029 9. 64575 9.85121 '
wl| 0.06687 0. 1070 0. 1717 0. 2756 0.4423 0.7099 | u=Cw.
log ,‘fu 0. 82391 1. 02937 1.23483 1. 44029 1. 64575 1.85121
v 6. 67 10.70 17.17 27.56 44.923 70.99 [v="Y.
oJ
—log2Cz | —9.84679 | —9.75771 | —0.16863 | —0.57955 | —0.99047 | — 1.40139
w| —0.222 —0. 572 —1.474 —3.798 —9.783 | —25.199 |w=—2Cx.

These data can be used to test the other formulas given in Table 3. In computing from the 100-meter level to other

values of (w z), we proceed as follows, showing as examples a few of the levels only for €, = 0. 00111; o® =

Radius = in all parts of the vortex.

¢
.
3

1

II. z log = log C, 2 log &* log o, log @, log = log @, log @, log oy

0 — o — @ o @ o @ @ ®
10 1. 00000 8. 04576 4. 55630 2. 27815 2.17269 1.86723 1. 66177 1. 45631 1. 25085
100 2. 00000 9.04576 3. 55630 1.77815 1. 57269 1.36723 1.16177 0. 95631 0. 75085
200 2.30103 9. 34679 3. 25527 1.62764 1. 42218 1. 21672 1. 01126 0. 80580 0. 60034
300 2. 47712 9. 52288 3.07918 1. 53959 1.33413 1.12867 0. 92321 0.71775 0. 51229
700 2. 84510 9. 89086 2.71120 1.35560 1.15014 0. 94468 0. 73922 0. 53376 0. 32830
1100 3. 04139 0. 08715 2. 51491 1. 25746 1. 05200 0. 84654 0. 64108 0. 43562 0. 23016

i

IIL. & o) (2 Ty @, [2H @y

0 o @ @w oo (-] o]
1 600. 0 373.8 232.9 145.1 90.4 56.3
2 424.3 264. 4 164.7 102.6 63.9 39.8
5 268. 4 167. 2 104. 2 64.9 40. 4 25.2
10 189.7 118. 2 73.7 45.9 28.6 17.8
25 | These computations need not be 120.0 74.8 46.6 29.0 18.1 11.3
50 executed. 84.9 52.9 32.9 20. 5 12.8 8.0
100 60.0 37.4 23.3 14.5 9.0 5.6
200 42. 4 26. 4 16.5 10.3 6.4 4.0
300 34.6 21.6 13.5 8.4 5.9 3.3
400 30.0 18.7 11.7 7.3 4.5 2.8
500 26. 8 16.7 10. 4 6.5 4.0 2.5
600 24.5 15.2 9.5 5.9 3.7 2.3
700 22.7 14.1 8.8 5.5 3.4 2.1
800 21. 2 13.2 8.2 5.1 3.2 2.0
900 20.0 12.5 7.8 4.8 3.0 1.9
1000 19.0 11.8 7.4 4.6 2.9 1.8
1100 18.1 11.3 7.0 4.4 2.7 1.7

For the other values of C, following C, = 0. 001111 it is sufficient to subtract log p = 0. 20546 from the values of log =,
under C, in succession to one another in Section II. The log m of Section I appears in its place in Section II.
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vortex at the sea level than at any other point, the pitch
diminishing upward and outward. The total velocity ¢ is
greatest near the axis at sea level, it diminishes rapidly outward
and upward, and its magnitude near the axis is astonishing.
The time of the rotation of a particle on a given plane is found
as follows. The length of the path is 2 =@, the velocity v; so

that ¢t = 2%5 Take as an example the plane z = 1100. (See

Table 9.)

It takes 5.14 seconds to make one circuit about the axis at
the surface of the ocean on the outer tube, and 0.04 second,
i. ., one twenty-fifth of a second, on the sixth or inner tube.
Subtracting the successive values of log t, (logt —logt).. .,
the result is 2 log p in all cases, so that the time of rotation in
the different parts of the vortex can be computed from a few
initial values. In this way it is seen that even a few isolated
observations of the radius @ and velocity v can be used to con-
struct the entire vortex. A single anemometer record in a
vortex at a distance @w from the center of the track is there-

TABLE 7.— Computation of the radial, tangential, und vertical velocities thru-
out the vortex.

I. THE RADIAL COMPONENT, u=Cw.

(1) (2) (3 (4) (5) (6)
z log uy log log uy log u4 log ug log ug
0 -] w0 @ o «© 2]

10 9. 32491 9. 53037 9. 73583 9. 94129 0. 14675 0. 35221
100 8.83391 9.02837 9.23483 9. 44029 9.64675 9.85121
200 8.67340 8. 87836 9. 08432 9. 28978 9. 49524 9. 70070
300 8. 58535 8. 79081 8. 99627 9. 20173 9. 40719 9. 61265
700 S. 40136 8,60632 8. 81228 9. 01774 9.22320 9. 42866

1100 8.30322 8. 50868 8.71414 8.91960 9. 12506 9. 83052
z L0 Ug Uy Uy Urn Uy
0 ® o w -] 00 - -]

1 0. 667 1. 070 1,717 2. 756 4.423 7.099

2 0,471 0.757 1. 214 1.949 3.128 5. 020

5 0,298 0. 479 0.768 1.233 1.978 8.175

10 0.211 0. 339 0. 544 0.874 1.402 2,250

25 0.133 0.214 0.343 0.551 0. 385 1.420

0. 094 0. 151 0,243 0. 390 0. 626 1,004

100 0.067 0.107 0.172 0.276 0.442 0.710

200 0.047 0.076 0.121 0,195 0.313 0. 502

300 0,039 0. 062 0. 099 0.159 0.255 0. 410

400 0.033 0. 054 0. 036 0.138 0. 221 0. 355

500 0. 030 0.048 0.077 0.123 0.198 0. 318

600 0. 027 0.044 0.070 0. 113 0.180 0.290

700 0.025 0. 040 0. 065 0. 104 0.167 0. 268

800 0. 023 0.038 0.061 0. 097 0. 156 0.251

900 0. 022 0. 036 0. 057 0. 092 0. 147 0. 237

1000 0.021 0. 034 0.054 0.087 0.140 0.225

1100 0.020 0.032 0. 052 0,083 0,133 0.214

II. THE TANGENTIAL COMPONENT, 1=Cw2z.

(1) (2) (3) (4) (5) (6)
z log vy log v log vy log vy log vg log v;
(1] —_w —w —> — ™ —® —
10 0. 32391 0. 52937 0. 73183 0. 94029 1.14575 1.35121
100 0. 82391 1.02937 1.23483 1.44029 1. 64676 1.85121
200 0.97442 1. 17988 1. 38534 1. 59080 1. 79626 2, 0172
300 1,06247 1.26793 1. 47339 1. 67885 1.38431 2. 08977
700 1. 24646 1. 45192 1.65738 1. 86284 2. 06830 2. 27376
1100 1. 34460 1. 55006 1,75552 1.96098 2. 16644 2. 37190
z Ty Vs 3 vy g g
0 0 0 0 0 0 0
1 0.7 1.1 1.7 2.8 4.4 7.1
2 0.9 1.5 2.4 3.9 6.3 10.0
5 1.5 2.4 3.8 6.2 9.9 15.9
10 2.1 3.4 5.4 8.7 14.0 22.5
25 3.3 5.4 8.6 13.8 22,1 35.5
50 4.7 7.6 12.1 19.5 31.3 50. 2
100 6.7 10.7 17.2 27.6 44.2 71.0
200 9.4 15.1 24,3 39.0 62.6 100, 4
300 11.6 18.5 29.7 47.7 76.6 122, 9
400 13.3 21.4 34.3 55.1 88.5 142.0
500 14.9 23.9 33.4 61.6 98.8 158.7
600 16.3 26.2 42.1 67.5 108.3 173.9
700 17.6 28.3 45.4 72.9 117.0 187.8
800 18.9 30.3 48.6 8.0 125.1 200.8
900 20.0 32.1 51.5 32,7 132.7 213.0
1000 21,1 33.8 54,3 87.2 139.9 224.5
1100 22.1 36.5 57.0 91. 4 146,7 235. 4
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THE VERTICAL COMPONENT, u=—2Cz,

1) (2) (8) (4) (5) (6)
z log w log wa log w; log w4 log wp log we
0 — o —» ~—~ 00 — o —» — o
10 8.34679 8. 75771 9.16863 9. 57955 9.99017 0. 40139
100 9.34679 9. 76771 0.16863 0. 57966 0.99047 1.40139
200 9.64782 0. 05874 0. 46966 0. 88058 1. 29150 1. 70242
300 9. 82391 0.23483 0. 64675 1. 05667 1.46759 1. 87851
700 0.19189 0. 60281 1. 01373 1.42465 1, 83557 2. 24649
1100 0.38818 0.79910 1. 21002 1.62094 2. 03186 2. 44278
= "y Wy w3 wy Wy Wy
0 0 0 0 0 0
1 —0.0022 —0. 0057 — 0.0147 — 0.0380 — 0,0978 . — 0.2520
2 —0. 0044 —0.0115 — 0.0205 — 0.0760 — 0.1957 | — 0.5040
5 —0.0111 —0. 0286 — 0.0737 — 0.1899 — 0.4891 | — 1.260
10 —0, 0222 —0.0572 ~— 0.1474 — 0,3798 — 0.9783 | — 2.520
25 —0. 0556 —0. 1431 — 0. 3686 — 0.9495 — 2.446 — 6.300
50 —0.1110 —0, 2862 — 0,7372 — 1.899 — 4,891 — 12.60
100 --0.222 —0.672 — 1474 — 3.708 — 9.783 — 26.20
200 —0. 444 —1.145 2.949 — 7.596 — 19,57 — 50.40
300 —0.667 —1.717 - 4.423 —11.39 — 29,35 — 75.60
400 —0.889 —2.290 — 5.898 —15.19 — 89,18 —100.80
500 —1.111 —2. 862 — 7.372 —18.99 — 48.61 —126. 00
600 —1.333 —3. 434 — 8.847 —22.79 — 58.70 —151.20
700 —1.556 —4. 007 —10. 32 —26.59 — 68.48 —176. 40
800 —1.778 —4.579 ®_11.79 —30.38 — 78.26 —201. 60
900 —2.000 —5. 162 —13.27 —34.18 — 88.05 —226. 80
1000 —2.222 —b.724 —14.74 —37.98 — 97.83 - 262. 00
1100 —2. 444 —6.297 —16.22 —41.78 —107. 61 —277.20

fore of great value in theoretical meteorological discussions.
A consideration of the forces of pressure involved in these
velocities is sufficient to see where the powerful destructive
forces arise, whose effects are noted in the débris which mark

the track of even a small funnel-shaped tornado tube.

TABLE 8.— The angles (i, 7) which the current having the velocity of q makes

with the tangent at (w, ¢).

(Fig. 1.%)

. . U
I.—HORIZONTAL ANGLE % (tam: 3)-

3 (1) (2) (3) (4) {5) (6)
U o o o’ D -] o
10 9. 00100 9, 00100 9.00100 9. 00100 9. 00100 9. 00100
50 8, 50104 8.30104 8. 30104 8. 30104 8.30104 8.80104

100 8. 00000 8.00000 8. 00000 8. 00000 8. 00000 8. 00000

300 7. 52288 7. 52288 7. 52288 7. 52288 7. 52288 7. 52288

500 7. 30104 7.30104 7.80104 7.30104 7.80104 7.30104

700 7. 15490 7. 15490 7. 15490 7. 15490 7. 15490 7. 15490

900 7. 04576 7. 04576 7. 04576 7. 04576 7.04576 7.04576

1100 6. 95362 6.95862 6. 95862 6. 95862 6. 95862 6. 95862

o ! [*] ’ < ’ [+] ’ [+ ’ [«] ’
0 90 0 9% 0 9 0 9 0 9 0 90 0
10 5 43 5 43 5 43 5 43 5 43 5 43
50 1 9 1 9 1 9 1 9 1 9 1 9

100 0 34 0 34 0 34 0 34 0 34 0 34

300 0 11 0 11 0 11 0 11 01 0 11

500 0 7 0 7 0 7 0 7 [ 0 7

700 0 5 0 5 0 b 0 5 0 5 0 5

900 0 4 0 4 0 4 0 4 0 4 0 4

1100 0 3 0 3 o 3 0o 3 0 3 0 3

II.— VERTICAL ANGLE tan ki
T T\ = veeci)

z 1) (2) (3) (4) (5) (6)
0 o o o - a -]
10 8.02071 8. 22617 8. 43163 8.63709 8.84255 9. 04801
50 8, 87237 8. 57783 8. 78329 8. 98875 9.19421 9. 39967

100 8. 52288 8. 72834 8,93380 9.13926 9. 84472 9.55018

300 8. 76144 8. 96690 9.17236 9, 37782 9. 58328 9, 78874

500 8.87287 9.07783 9. 28329 9. 48875 9.69421 9, 89967

700 8. 94543 9,15089 9. 85635 9, 56181 9, 76727 9.97273

900 9. 00000 9. 20546 9. 41092 9.61638 9,82184 0. 02730

1100 9,04358 9, 24904 9. 45450 9. 65996 9. 86542 0. 07088

o ’ (o] ’ [} ’ o 4 (o] 4 (e} ’
0 0 0 0 0 0 0 0 0 [ ] [}
10 0 36 0 58 1 33 2 29 3 59 6
50 1 18 2 10 3 28 5 34 8 53 14 6

100 1 55 3 4 4 54 7 51 12 28 19 33

300 8 18 5 18 8 28 13 25 20 58 31 35

500 4 16 6 49 10 52 17 8 26 19 38 26

700 5 2 8 3 12 48 20 2 30 20 43 12

900 5 43 9 7 14 27 22 28 33 34 46 48

1100 6 19 16 4 15 54 24 34 36 16 49 39
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TABLE 8— Continued.
III.—TOTAL VELOCITY, g==(u'+4 'u"+w')*.
: (1) (2 ® (4 (5) (6)
0 0.00 0.00 0. 00 0.00 0. 0.00
10 2,12 3.40 5.46 8.77 14.09 22.73
4.72 7.57 12.15 19,50 31.30 51.77
100 6. 67 10.71 17.18 27.58 44.26 75. 34
300 11.6 18.6 30.1 9.1 §0. 2 144.3
500 14.9 24.1 39.1 64.4 110.3 202.7
700 17.7 23.6 46.6 77.6 135.6 257.7
900 20.1 32.5 53.2 89.4 159, 2 311.2
1100 2.3 36.0 59.2 100.5 182.0 363.7

*The vector (g, ¢, ) makes the angle  on the horizontal plane with the tangeut at the
point (@, ¢) ang tﬁe angle 4 in the vertical plane at the same point. The sec. 7 can be
neglected’ except very near the cloud level where the angle i increases rapidly to 90°,

TABLE 9.— Time to make one circuit at different distunces .

==1100 (1) @ 3 (4) ) 6)

log @ 1.25746 1.05200 0. 54654 0.64108 0. 43562 0. 23016

log 27 0. 79818

log 2r®@|  2.05564 1. 85018 1. 64472 1.43926 1.23380 1. 02534

log v 1.34460 1. 55006 1.75552 1.96093 2.16544 2.37190

log ¢ 0. 71104 0. 30012 9. 88920 9. 47828 9.06736 8. 65644
! 5.14 2,00 0.77 0.30 0.12 0.04

The volume of air transferred upward thru each horizontal
section, in the areas bounded by the circles ,, m,, @, m,, m,, @,
at a given elevation, is the same on a glven level and it is
also the same thru every horizontal plane. In other words,
the volume of air flowing upward is the same in every cylindri-
cal ring-area bounded by the surfaces generated thru the
revolution of the lines (w, z) around the central axis. This is
easily computed by the formaula,

volume, V== (m“z - mn+12) Wy,
where w,, is the mean vertical velocity on a given ring section.
Two examples are taken on the sections for : = 100, and 2=1100
meters. Take log o from Table 6, Section II, and log w from
Table 7, Section IIL.

TaBLE 10.— Volume = 7 (x,2 — &, 1101w, -

| ‘
z=100 m @ | @ O] (5) (6)
log & | 1.77815 | 1.57269 { 1.86723 | 1.16177 } 0. 95631 ‘ 0.75085 | Table 6, TI.
log &* | 8.55630 | 3.14538 | 2.73446 | 2.32854 | 1.91262, 1.50170
ot | 3600.0 | 1397.60 | 542.58 | 210.64 ‘ L7750 31747
T .
R VeS| 2202.4 ©  855.02 | 331,94 | 128.865 . 50,028
log 3.34200 | 2.93198 | 2,52106 | 2. 11014 | 1.69922
| '
logw | 934679 | 9.75771 ‘ 0.16863 | 0.57955 l 0.99047 ; 1.40139 | Tahle 7,T1L.
log w, 9.55225 | 9.96317 | 0.37409 | 0.78501 \ 1.19593
log = 0.49715 | 0.49715 | 0.49715 0.49715i 0, 49715
log V 3.39230 | 3.39230 | 3.39230 | 3.39230 | 3.39230
Volume 2467.7 ‘ 267.7 | 24677 | 2467.7 ‘ 2467.7
T T ; ! o
2 =1100 (1) @ ¥ ‘ 1) ‘ (5) (6)
A " ‘ -
log @ ! 1.25746 1.05200 ’ 0. 84654 ‘ 0.64108 | 0. 435b2 0. 28016
. i |
z.-r"?—m"Jrl? 200.24 | 77.734 | 30.176 ‘ 11.7157 | 4. 5482
log 2.30155 | 1,89061 147966i 1,06877 | 0.65784
logw,, 0.59364 | 1.00456 | 1,41543 | 1.82640 | 2.23732
i
Volume 2468.0 | 2467.8 | 2467.6 ‘ 2467.8 | 2467.8

Since log w plots on a straight line, the mean vertical velocity
for a given area between @, and m,.; is found by taking log

t,,= ¥ (log w,+ log w, ;). It is seen that the air is ascend-
mg in the vortex at a rate of 2467.7 cubic meters per second
thru each of the vortex tube rings.
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THE PRESSURES IN THE VORTEX.

It is inferred, by comparing the general equations of motion,
6 and 8, that the pressure changes can be determined as fol-
lows: On any given section at the level 2 the third equation
need not be considered, because there is no integration in a
vertical direction, dz, and the second equation can be omitted,

1 oP
gince — — L~ = 0, go that there remains only the first equa-
P rm)go
7]
tion. The partial differentials u + w( 4 can be neglected

in this vortex where the l'a.dlal veloclty chan(res slowly, except

very near the cloud base; - = 0 in steady motion, and Fu =0,

)t
practically, so that there remains for computation only,
16P n?
— 25 —

that is, the centrifugal and the deflecting force.
This computation is summarized in Table 11, Section I, which

—32ncos . v,

2

contains the Iog%, and % , derived from Table 7, Section II,

and Table 6, Section II, the centrifugal force being exprest in
mechanical units. Since the largest value of 2n cos J. v=0.0227,
this term can be neglected.

In integrating for the pressure, we have,

v?
PII—PM+1=[’7H. - (mn
T/ m

The difference of pressure between successive rings ,,
@, .1 is equal to the mean deusity of the air at the elevation
of the horizontal section z, multiplied by the mean centrifugal
force from one ring .to the other, multiplied by the distance
from one ring to the other. Since the air density is not really
known across the section, I can only take the mean density at
the elevation sz, tho it is not entirely correct and evidently

o, +l)-

o

too large. The mean centrifugal force (é) N is easily found.
Table 11, Section I, shows that on the same level the differ-
ence of the logs of the IE is + 3 log = 3 x 0.20546 = 0.61638.
The successive values of these logs plot on a straight line so

T 2
that the mean <U—;> between the rings =, and @, ., equals the

mean of the logarithms. These values are given in Section II,
together with the log p, which has been taken as log p

m*
TABLE 11.— Computation of the pressure B, — B, 1 thruequation C. R. 165,
or §;.

?
I.—CENTRIFUGAL FORCE o
@

4 (1) (2) (3) (4) (5) (6)
L P e
10 8. 36967 8. 98605 9. 60243 0.21381 0, 83519 1, 15157
50 4. 41811 0,03449 9. 65087 1,26725 1. 83363 2. 50001
100 9. 86967 0. 48605 1. 10243 1. 71881 2, 33519 2. 95157
300 0, 58535 1,20173 1.81811 2, 43449 3.05087 3. 66725
600 0. 91811 1. 53449 2. 15087 2. 76725 3. 33363 4. 00001
700 1,13732 1. 75370 2. 37008 2, 956846 3. 60284 4. 21922
900 1.80103 1,91741 2, 53379 8,15017 3. 76655 4. 38293
1100 1. 43174 2, 04812 2.66450 3.28088 3. 89726 4. 51364
L P T T L ) P Y P
10 0.023 0.097 0. 400 1.66 6,84 28.3
50 0, 262 1.083 4. 476 18,50 76.49 316.2
100 0. 741 3. 062 12, 660 52. 34 216. 37 894.5
300 3. 844 15.918 65. 783 271, 95 1124.3 1647.8
500 8.181 34,237 141,54 585. 13 2419.0 10000.
700 13,719 56. 715 234,47 969, 30 4007. 2 16566.
900 20. 000 82. 682 341,82 1413. 10 5841, 9 24151.
1100 27.023 111. 720 461. 85 1909. 30 7893.3 32632.

2m cost. v can be neglected. For [1100, (6)] 2 n cos #v=0.0227.
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TABLE 11.—Continued.

¥
II.—LOG OF THE MEAN ('L)
[o]

m
2 (1)-(2) (2)~(3) 3)-(4) (4)-(5) (5)-(6) log p..
[ I O PRI PO RSO AP 0.04827
10 8, 67786 9.29424 9. 91062 0. 52700 1.14338 0. 04877

50 | 9.72630 0. 34268 0. 95906 1,57544 2.19182 | 0. 05077

100 0. 17786 0. 79424 1. 41062 2, 02700 2. 64338 0. 05326
300 0. 89354 1,50992 2.12630 2, 74268 3. 35906 0. 06324
500 1. 22630 1. 84268 2.45906 3.07544 3. 69132 0.07322
700 1, 44551 2. 06189 2, 67827 3.29465 3,91108 0, 05320
900 1,60922 2. 22560 2.84198 3. 45836 407474 0. 09319
1100 1,73993 2, 35631 2. 97269 3., 58907 4.20545 0. 10313

— R e .
ITI.—PRESSURE P,, — Py =pnm ( (a7, n,,+1).
.m m
z (1)-(2) (2)-(3) (3)-(4) L (@)-(5) i (8)-(6)
; ‘

N PO o PO AN
10 3.81 9.8 25.3 5. 1 167.8
50 19,14 49.3 127.0 327.1 842,7

100 38,51 99.2 255.5 658. 1 1695, 2
300 118.2 304.5 784.2 2020. 1 5203, 6
500 201.6 519, 2 1337.4 3445, 1 88740
700 238, 8 743.9 1016.1 4935. 4 12713.0
900 379.9 978.6 2520, 7 6492, 7 16724.0
1100 475.1 1233, 9 8152.6 8102.6 20918. 0

IV.—PRESSURE B, — B,,+1_(P,, — P,,+1 ) >< 0.0075 (m min).

z (1)-(2) (2)-(3) (3)-(4) ‘ {4)-(5) 5i-(6)

0 oo e TR RO
10 0. 02 0.07 0.2 0.5 1.3
50 0.144 0.37 1.0 2.5 6.3

100 0,289 0.74 1.9 4.9 12.7
300 0. 887 2,28 5.9 15.2 30.0
500 1,512 3.89 10,1 25.8 66,6
700 2,166 5. 53 14.4 37.0 95.4
900 2,849 7.34 18.9 48.7 125,4
1100 3,564 9.18 23.7 60.9 156, 9

The resulting difference of pressure between successive
rings, at each successive elevation, is given in Section ITI, and
the corresponding pressure differences in millimeters of mer-
cury in Section IV. Hence, on the level z= 1100 meters, near
the surface of the water, we have,

7.0 @, 1L3 &,

@ @, 2.7
5.9 750 5 B, 759 7

17 o, . 44 o
B, 5090 B, 665. 6.8

BB

so that the difference of pressure between ring o, and ring o,
is equal to 97.4 mm. = 5.835 inches of mercury. By the thel-
modynamic computations on the waterspout summarized in
Table 51, MontELY WEATHER REVIEW, August, 1906, it was found
that the difference of pressure between the cloud base and the
sea level is 97.83 mm. = 8.595 inches of mercury. It is not
too much to suppose that this difference, 97.4 — 91.3 = 6.1 mm.,
is due to two causes, (1) an imperfection in the value of the
density log p,, = 0.10318, which should probably be taken less
in the interior of the vortex than on the outside; and (2) the
fact that the inner ring of the vortex which actually develops
in nature may not exactly coincide with o, = 2.7. That is, the
central calm may not be exactly 5.4 meters in diameter. In-
deed, the solution of the equations for Bessel’s functions,
6290 1 3 (
et wam TEr=0,

which can be derived from the vortex equation,

O 1 0¢ | 3%

om' @mIw ' 9=
results in a root, a m = 3.832. It is probable that a=1, and
it has been taken as unity in the formulas for this waterspout,
so that o, = 3.832, which is the radius of the closest vortex
tube to the axis. My computation carried the development to
o, = 1.70 meters, but it should probably stop short of &, = 2.7,
tho at what point it is not possible to decide. We may con-
clude that the innermost pressure of the vortex at the sea level 1s
about equal to that at the cloud level from whence the vortexr was pro-

2(5(:)2,
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Jjected. This view can be strengthened by the following con-
gideration. In a pure vortex of this type the rotating veloecity
next to the calm core at any level is apparently equal to that
of a body falling freely from the plane of reference thru the
distance z, so that v*= 2 gs.

TABLE 12.— Comparison of v, with v and q.

N

Comparison of v = /2 gz with vy in ——
HIApATISOn ! . \/ g= With v in Comparison of vg with ¢=23.06 \/T. AB/B.
Tabhle 7, Section 11.
s log 24 = Tog v | v vy From foruula 13, page 470, Monthly Weather
) I, o Review, U-.toher 1006
0 0.0 0.0 —_0a an T
10 | 2.20952 1.14626 | 140 140 y= 2""0"‘/§ AB
50 2.99149  1.49575 31.3 313
100 3.20252 1.64626 44.3 44.2 7 =292.7°, Table 51,
300 3. 76964 1. 88482 76,7 76.6 For - A B=— 97. .pnm 763.8—665.9= B, —
500 3.99149 1, 99575 99.0 98.9 ( B =763 3mm Table 51.
700 4.13762 2, 06831 117 2 117.0
900 | 4.24676 212338 | 1329 1327 5 == ¢ = 1410 meters pe 1
1100 | 433391 2.16696 | 146.9 146.7 s =1 rieters per second.

The close agreement between the value of the falling veloc-
ity, v = +/2gs, and v,, the velocity on the edge of the core, as
given in Table 7, Section II, seems to indicate that this is a
possible way in which to begin the discussion of such vortices
in the atmosphere, or at least to check the results, as in this
instance.

By plotting the points in a curve indicated by the coordi-
nates (m, B, —B,.;), a8 given in Table 6, II, for the radial
distance m, and in Table 11, IV, for the differences of the
pressure between successive rings, it is found that they form
a logarithmic curve, and consequently the logarithms of these
coordinates plot on a straight line. The computation shows

that
(B 1) ,
log _: ,L 17 =2 log p =2x0.20546=0.41092,
o (B,,_.l )
log m,, ~- log o = =0205:‘:6,
n+1
B —B,.4) as .
Hence, log Lo Pun) _ 100 T _1og,  =0.20546,
° (Bn-l B ) ° m11+1 g

so that the logarithmic relation between the spaces within
the successive vortex tubes and the corresponding pressures

is thus determined. = (0.20546

This value of log p =log i

mn-!—l
18 fundamental to the structure of a vortex, and it seems to be
an atmospheric constant which should be carefully determined.

RELATION OF THE TEMPERATURE TO THE VORTEX MOTION.

The thermodynamic energy which generated this water-
spout may he attributed to two principal sources. The first
is the vertical rise of the lower strata induced by the general
cloud motion and due to the overflowing cold stratification.
The cloud generally rises in the central portions and falls on
the edges, and this upward buoyancy is converted from a
broad surface at the cloud base into a narrow vortex tube,
wherein the cloud surface descends in a small area to the sea level.
The second source of energy is the horizontal pressure flow
of two strata of different temperatures, so that the pressure
shall remain the same on each side of the surface of discon-
tinuity. This subject will be taken up at length in the later
papers of the series, but it may be noted here that the follow-
ing relation holds:

I
IP

Second stratum: — ‘ ¢
I

First stratum:

l
.
SN
=
v
Il
[

FP—v) +9(z—2)

(=) + 9 (7, — 2,)
In order that on the same boundary, where 2, = g,, the pres-

sure shall be the same, P, = P, after subtracting there will
remain,
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P (v =) =p,} (v~ ).
From the general law,

=, BT,
P,=p, RT,
n T,

For P, = P, py="" Substituting,

1
Tﬁ 2 2 2 2
Py (v —vy=p, (v —v?). Hence,
1

T, (v — ) =T, (CRE R

The relative velocity of one stratum, (v — v;’), multiplied
by the temperature of the second, 7, equals the relative
velocity of the second stratum, (v — vj), multiplied by the
temperature of the first, 7|; and this maintains the pressure
as if the air had no motion, and the temperature gradients
remained normal. The first type of vortex with the funnel-
shaped tube depends upon the first principle more than upon
the second, while the second type of vortex with the dumb-
bell tube depends upon the second rather than upon the first.
This will be illustrated by the Chamberlain 2d A, the St. Louis
tornado, and the De Witte hurricane. The ocean cyclone has
in addition to these two sources of motion a third, similar to
the last, but modified by the fact that the boundary of the
stratification between the cold and warm masses instead of
being horizontal is vertical in part, as shown by the tempera-
ture distributions in cyclones and anticyclones up to 10,000
meters. The land cyclones depend more decidedly upon the
third source of motion than does the ocean cyclone.

II.—THE THEORY OF VORTEX MOTION APPLICABLE TO THE
DUMB-BELL-SHAPED TUBE IN THE COTTAGE CITY WATER-
SPOUT.

. THE DUMB-BELL-SHAPED TYPE, COTTAGE CITY WATERSPOUT, CHAMBERLAIN

2D A.

An examination of the photographs of the Cottage City
waterspout given in the MoxtaLy WEATEER REVIEW for July,
1906, pp. 307-315 and Plates I--X, shows that two distinct forms
of the tube or types of the vortex were developed at different
times from the same cloud. At the second appearance, 1:02
p- m. to 1:17 p. m. (Plates I-VII), the dumb-bell-shaped type
prevailed (see Chamberlain’s photograph 2d A); and at the
third appearance, 1:20 p. m. to 1:27 p. m. (Plates VIII-X.),
the funnel-shaped type was exhibited. In all accessible photo-
graphs of tornadoes these two types occur quite indifferently
in numbers, apparently developed by subtle differences in the
physical conditions of the cloud at the several occasions of their
formation. While both types are of theoretical interest, it is
much more important for the meteorologist to understand the
dumb-bell type,because the large tornadoes, the hurricanes,and
the cyclones in part, are constructed upon the same principles,
differing from one another only in their dimensions and pro-
portions. Since the ultimate explanation of the motions of
the atmosphere in cyclones and anticyclones seems to be very
closely associated with the theory of dumb-bell vortices, it will
be proper to keep in mind the goal toward which this present
exposition tends.

It can easily be seen in the photographs above referred to, 2d
A to 24 G, inclusive (Plates I to VII), that the tube, instead of
continuing to taper from the cloud to the sea level, reaches a
minimum diameter more than halfway down from the cloud to
the sea and then begins to expand. The lower portion is not
entirely visible, on account of the enveloping cascade of spray,
and it will be shown in these papers that, in fact, the lowest
section is not fully developed, and that the vortex tube is
amputated or truncated by the sea-level surface at from one-
twentieth to one-third of its theoretical length, according to
circumstances. The corresponding upper section is fully de-
veloped at the cloud, tho the tube and the cloud merge into
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one another before the asymptotic extension of the vortex is
reached. When the tube begins to break up, and the gyratory
velocity diminishes, the dumb-bell form appears more clearly,
as on 2d F, and it is very distinct on 2d G. In the earlier
numbers of the series, 2d A to 2d E, the inner tubes of the
complete vortex, which have very great velocities, are formed,
but the outer tubes appear as the rotation velocity falls in
amount.

According to the formulas of the first paper of this series
(compare Table 3 and Cloud Report, 1898, page 513), we begin
with the vortex system exprest as follows:

v
1. Current function. ¢ = — = Am"sin a2
h
2. Radial velocity. we=—1 gf‘ =—Aow cos az.
@ 92
/v
3. Tangential velocity. v = @ = Aqosin .
@
e 10
4. Vertical velocity. W = 1()—" = 24 sin az.
ol

APPLICATION OF THE FORMULAS TO THE COTTAGE
CHAMBERLAIN 2D A.

CITY WATERSPOUT,

The primary difference between the funnel-shaped and the
dumb-bell-shaped vortex tube is that the former extends from,
its asymptotic relation at one plane of reference, in the base of
the cloud, perpendicularly to a great distance from it, taper-
ing continuously to a tube of very small dimensions, while the
latter becomes agymptotic to two planes of reference, one in
the cloud base and the other at or below the surface of the
sea. Not only is the distance between the two reference
planes to be measured in meters, but the axis or connecting
line is also to be divided into 180 parts or degrees. Thus, in
Fig. 3, assume that the upper line is 1200 meters from the
lower line, that the axis is of the same length, and that this
represents the entire vortex. If this length is taken as 180°
or parts then the a appearing in the formulas is

180

C= 1560 = 0.150 [9.17609],

which gives the angular change per meter. Since the symmetry
of the formulas, as controlled by the sine and cosine terms,
shows that the variations lie between 4+ 1 and — 1, it follows
that sin a z and cos a z will carry the function thru all the inter-
mediate values. Tig. 3 is constructed by plotting the lines
determined by the coordinates of Table 17, which gives the
radii @ of the several tubes at different heights 2.

Since there is no way to determine the value of the tangen-
tial velocity at any given point, it is necessary to assume a
value for vat a point (m@, z). .The correctness of the one adopted
can be checked by constructing the vortex from these data,
and comparing it with the shape as shown on the photograph.
The height z was determined as about 1200 meters by the
measurements, and after several trials I have taken

az= 170° or 10°,
o = 200 meters,
v= 2 meters per second.
The value az= 10° is for a point near the sea level, and
the value ¢z = 170° is for a point just below the cloud base.
Hence we have the current function,
a¢ = vo = 400[2.60206].
For the value of the ratio of the successive radii, at the points
separated by 10-millimeter intervals of pressure, as 760,
750 690, we shall agsume the same value as that given
on page 469, whose logarithm is,
log p = 0.20546.
- These data enable us to proceed with the computations in
the regular order, and to develop the entire structure of this



